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ABSTRACT

In separate series of ¥T00 engine tests, direct comparisons and Rhode et al. (1988) and by Rocketdyne (internal
were made between the forward-facing labyrinth and dual-brush Rocketdyne report). Optimization procedures are available from
compressor discharge seals. Compressor speeds to 43 000 rpmMTI Inc. (private communication from W. Shapiro) and are
surface speeds td60 m/s (530 ft/s), pressures to 1 MPa being implemented into the NASA seals codes program.
(145 psi), and temperatures to 680 K (769 characterized Brush seal systems are efficient, stable, contact seals that are
these tests. The wear estimate for 46 hr of engine operations wasusually interchangeable with labyrinth shaft seals but require a
less than 0.025 mm (0.001 in.) of the Haynes 25 alloy bristles smooth rub runner intex€e and an interference dipon installa-
running against a chromium-carbide-coated rub runner. The tion. The major unknowns and needed research are tribological
pressure drops were higher for the dual-brush seal than for the (e.g., life or interface friction and wear) because of the
forward-facing labyrinth seal and leakage was leweith the following performance demands: pressure drops over 2.1 MPa
labyrinth seal leakage being/i2times greaterimplying better (300 psi), temperatures to over 1090 K (1569, and surface
seal characteristics, better secondary airflow distribution, and speeds to 460 m/s (1500 ft/s). Current research supported by the
better engine performance (3 percent at high pressure to 5 per- Navy (private communication from W. Voorhees), the U.S.
cent at lower pressure) for the brush seal. (However, as brush Army (private communication from R. Bill and G. Bobula), and
seals wear down (after 500 to 1000 hr of engine operation), their the U.S. Air Force's Wright Patterson Air Force Base is
leakage rates will increase.) Modification of the secondary flow addressing these issues and shows promise in meeting these
path requires that changes in cooling air and engine dynamics be demands.
accounted for. In this paper we compare the relative pressure drop

differences between the baseline labyrinth and dual-brush
compressor discharge seals at compressor discharge pressures to

INTRODUCTION 1 MPa (145 psi) and temperatures to 680 K (7Bp with

Labyrinth seals are efficient, readily integrated into designs, operating speeds to 43 000 rpm.
and generally easy to install into engines but are inherently
unstable (Hendricks et al., 1992). However, installing a simple
swirl break significantly enhances the stability margin and miti- ENGINE FLOW PATH
gates this drawback (Childs et al., 1989). Details of theory, = The power stream airflow through the compressor and the sec-
experiments, and design methods for labyrinth seals and ondary airflow leakage past the compressor discharge seal
configurations are provided by Trutnovsky (1977). Forward- (CDP) are illustrated in Fig. 1(a), and the CDP viscous-tube
facing labyrinth tooth configurations with a variety of rub  flowmeter is shown in Fig. 1(b). The compressor discharge seal
interfaces (e.g.honeycomb) were studied in detail by Stocker package and associated drain tube are located immediately
etal. (1977) under a U.S. Air Force contract with codes downstream of the impeller and labeled CDS. The drain tube
developed by Morrison and Chi (1985), Demko et al. (1988), was opened after a series of runs and swabbed for debris.



COMPRESSOR DISCHARGE SEAL

Labyrinth Seal System
The labyrinth CDP seal package and airflow path are shown

in Fig. 2(a). The nominal 71-mm (2.8-in.) diameter forward-

facing labyrinth seal system is illustrated in Fig. 2(b). The

labyrinth teeth rub into a felt-metal type of interface, forming

the seal system. Note that the teeth are not all forward facing
and are used in different ways to satisfy different engine
operating requirements. A simulated exploded view of the seal
system is given in Fig. 3 and clearly illustrates the forward-

facing teeth of the rotor. However, the housing shown in the
figure is for the brush seal.

Brush Seal System
The dual brush was selected over a single brush for

reliability of a critical engine component, distribution of the
pressure drop per brush, and mitigation of wear. The dual-
brush CDP seal package and airflow path are shown
schematically in Fig. 4(a) and illustrated in Fig. 4(b). The dual
brush, nominally 71 mm (2.8 in.) in diameter, runs against a
0.178- to 0.254-mm (0.007- to 0.010-in.) thick, smooth (8 rms)
chromium-carbide-coated rub runner inted¢ as shown
schematically in Fig. 4(c). (See also Figs. 11(b) and (c)
between wear scars.) The basic seal system was envisioned by
General Electric and manufactured by Cross Mfg. Ltd.
(Flower, 1990). It has 0.071-mm (0.0028-in.) diameter,
Haynes 25 bristles angled 430 50° to the interface with
approximately 98 to 99 per millimeter of circumference (2500
per inch of circumference) and a nominal interference fit of
0.127 mm (0.005in.) at installation. Brush seal design
conditions include surface speed @68 m/s (550 ft/s),
temperature of 740 K (870F), pressure drop of 0.6 MPa (84
psi), and bristle deflection of 0.64 mm (0.025 in.). Figure 5
gives a post-test exploded view of the brush seal system with
associated instrumentation lines (cut after testing). Figure 6
provides a side-by-side comparison of the forward-facing
labyrinth seal (right) and the chromium-carbide-coated rub
runner rephcement (left); these represent the rotating interface.
This design could be enhanced by using an upstream "washer"
to mitigate foreign object damage and by optimizing the
backing washer thickness and profile to pressure loading to
mitigate hysteresis.

APPARATUS AND INSTRUMENTATION

Pretest and post-test photographs of the dual brush and its
installation in the seal system are shown in Figs. 4, 5, and 7.
Figure 4(b) depicts the dual brush prior to and Fig. 5 after test-
ing. Figure 7(a) shows the upstream view of the instrumented
housing; four thermocouples are attached to the side plates
with upstream and downstream pressure taps. Figure 7(b)
shows a direct view from the downstream side, and Fig. 7(c) is
an isometric view showing the "shiny" nature of the bristle
interface. Many seal dimensions and coating and installation
details are proprietary.

ENGINE SEAL INSTALLATION AND OPERATIONS

The YT-700 compressor section was first assembled with the
labyrinth seal and run as a baseline for comparison. After a test
series was completed, the engine was shipped to the Corpus
Christi overhaul facility. The compressor discharge seal
labyrinth system was removed and the brush package (Fig.
8(a)) inserted into the housing (Fig. 8(b)). The brush seal
system was installed without special waxes, which can lead to
bristle distortions and irregular bristle voidage. (These waxes
hold the bristles off the rotor during installation and readily
"burn out" at a low temperature.) The installation was blind; a
pencil run about the circumference spread the bristles
uniformly, and the shaft rotated as the package was inserted
vertically into the engine.

Operations consisted of the standard break-in procedures
with data taken primarily under steady conditions. The engine
was operated a total of 46 hr, including break-in, from ground
to  power-turbine-inlet-temperature-limited  full  power.
Compressor speeds were to 43 000 rpm with seal housing
temperatures to 680 K (76%). Local conditions at various
compressor discharge pressures are given in Tables | and Il.
The compressor discharge seal leakage was vented through the
drain tube (Fig. 1) and metered using the tube as a viscous
flowmeter. The debris collected in the drain tube was a
"lubricant powder,” but the spectra indicated several
contaminant metals from elsewhere in the engine. Rotor
roughness, brush construction, and upstream debris generation
play a major role in determining the spectrum. Although
neither radial nor axial rotor positions were monitored, such
position sensors should be an integral part of the engine
dynamics.

RESULTS

Post-test measurements of the brush and inspection of the
bristles revealed a smooth bristle interface with some
characteristic shear wear (Fig.9) but little other visible
damage. From an unrecorded visual inspection at 64X prior to
test, the bristle tips were sharp, clean, elliptical surfaces. The
brush wear patterns (Figs. 10 and 11) were attributed to the
engine dynamics although no dynamic tracking
instrumentation was available. The patterns are interesting in
that they are on the average® fffom the antirotation pin. (The
clocking point may be associated with a compressor bearing
position or loading point.) The patterns for the upstream seal
differed from those for the downstream seal (see also Fig. 4),
indicating a differential in pressure drop across each of the
seals. It is anticipated that about 40 percent of the total pressure
drop across the dual brush occurred across the first brush and
60 percent across the second brush (Flower, 1990, and private
communication from R. Flower of Cross Mfg. Ltd.). Such
loading resulted in stiffer bristles in the second brush and
implies a greater bristle wear. Preload and operational loads are
important design life parameters (private communication from
Ellen Mayhew of Wright Patterson Air Force Base), but data to
guantize these parameters are not available.



Another variation in the wear pattern is attributed to the rotor
machining or coating variations (Fig. 11(a)). The rotor showed
a small eccentricity and was investigated for metallic transfer,
but no significant transfer was found. The chromium carbide
interface was worn smoother by thabbing brush bristle
interface, implying some form of wear or material smearing
without significant transfer of the chromium carbide (CrC is
usually a plasma-sprayed mixture of,Crand CiC, ground
and polished to form the rub-runner suod). The CrC-coated
rub runner exhibited slight wear scars but no spallation or
coating degradation otherwise, as illustrated in Fig. 11(b);
however, eccentric operations, startup, or a hard rub caused a
deeper scar over about T26f the rotor as shown in Fig. 11(c).
These wear bands are readily visible in Fig. 6, where the upper
band is associated with the upstream (high-pressure side)
brush; see also Figs. 5 and 8.

During the test series the drain pipe (Fig. 1) was swabbed for
debris. When these samples were in turn investigated with a
scanning electron microscope (SEM), nickel, chromium, and
tungsten lines were observed along with other unexplainable
peaks of salts (e.g., Fig. 12). The nickel, chromium, and
tungsten lines characterize bristle materials and some possible
coating wear. The debris was fine and difficult to locate and
isolate within the tube. Other metal sources and rubbing
surfaces could have also ogiuced such debris, but we
attributed it to bristle wear.

The upstream wear surface of the rubmer is characterized
by Fig. 13(a) and the downstream wear surface by Fig. 13(b).
The CrC coating is characterized by light and gray areas, and
the energy spectrum shows the light areas to be an NiCr
composition and the gray areas to be predominantly Cr. The
light and gray areas of the matrix or unrubbed material between
the bands is illustrated in Figs. 13(c) and (d). Similarly, for the
upstream wear band in Figs. 13(e) and (f) and for the
downstream wear band in Figs. 13(g) and (h). There appears to
be no material transfer from the bristles to the rotor and only
minor scarring and polishing.

The result of interest here is that the initial design
interference was 0.127 mm (0.005in.) and the post-test
estimate of interference was 0.101 mm (0.004 in.), or perhaps a
maximum wear of 0.025 mm (0.001 in.).

Representative seal leakage variations as a function of com-
pressor discharge pressure are given as Fig. 14, with
calculation parameters in Table I. (See Fig. 1(b) for the loca-
tion of the flowmeter.) Readings 42 to 111 are labyrinth or
baseline seal data; readings 331 to 342 are dual-brush seal data.
On the average the labyrinth seal leakage is 2.5 times more
than the dual-brush seal leakage and strongly depends on
pressure relative to the dual brush. Increasing pressure tends to
pack the dual-brush seal; leakage flow decreases to approx-
imately 0.83 MPa (120 psi) and then increases. (It also stiffens
the bristles and increases wear.) The pressure drops for each
comparable compressor discharge pressure setting were higher
for the brush seal system than for the labyrinth seal system
(Tables I to lll). For the same engine operating conditions the
dual-brush system leaked less than the baseline forward-facing
labyrinth seal system. Also implied is enhanced engine

efficiency. However, a decrease in experimental testbed engine
specific fuel consumption (3 percent at compressor discharge
pressures of 1 MPa (145 psi) to 5 percent at 0.62 MPa (90 psi))
was found (Fig. 15, Table IV). Variation of experimental
testbed specific fuel consumption with horsepower is given in
Fig. 16. To within the error estimates the performance increase
is assumed to result from less leakage and enhanced dis-
tribution of secondary airflow through the engine.

It is important to recognize that more efficient seals cannot
simply be installed without computing aadcounting for the
secondary airflows etessary for the cooling and engine
dynamics associated with the seal leakage modifications.

SUMMARY

In a series of Y¥700 engine tests, direct comparisons were
made between a forward-facing labyrinth seal configuration
and a dual-brush compressor discharge seal. The nominal seal
diameter was 71 mm (2.8 in.). The test conditions included
compressor discharge pressures to 1MPa (145 psi),
temperatures to 680K (76%), operating speeds to
43 000 rpm, and swate speeds th60 m/s (530 ft/s) with the
working fluid being nominally dry ambient air. The bristle
wear was estimated to be less than 0.025 mm (0.001 in.) in
46 hr of engine operations.

The average labyrinth seal leakage was fimes greater
than the dual-brush seal leakage and strongly dependent on
pressure; the dual-brush leakage was weakly pressure
dependent and brush packing effects were noted. The
experimental testbed specific fuel consumption was less for the
dual brush than for the labyrinth sedl percent less at high
compressor discharge pressure and 5 percent less at lower
pressure. Decreased seal leakage and better distribution of
secondary airflow are assumedatocount for the performance
increases. (However, as brush seals wear down (after 500 to
1000 hr of engine operation), their leakage rates will increase.)

More efficient seals cannot simply be installed into an engine
without computing andccounting for the secondary airflows
necessary for the cooling and engine dynamics associated with
the seal leakage modifications.
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TABLE I.—PARAMETERS FOR CALCULATING SEAL LEAKAGE VARIATIONS

[CDP viscous-tube flowmeter diameter, 0.625 in.]

Read- | Compressor| Temper- Total Static Pressure | Velocity, | Volumetric Standard Density, Weight

ing discharge ature, pressure, | pressure, ratio ft/s flow rate, volumetric lo/ft® flow

pressure, °F psi psi ft¥/s flow rate, rate,

psia ft’/s Ib/s
42 70 498.37 16.31 16.08 | 0.985898( 178.3516 0.379983 0.225091| 0.045303| 0.010197
49 90 578.11 17.39 17.05 .980449 | 208.8661 444995 .258028 .044345 .011442
56 145 764.85 22.15 21.52 .971558 | 256.2389 .545924 .338611 .047436 .016062
63 90 581.32 17.48 17.13 979977 | 211.4514 .450503 .261638 .044416 .011621
71 70 504.08 16.32 16.08 .985294 | 181.7921 .387313 .228074 .045035 .010271
96 120 687.96 19.73 19.2 973137 | 248.0307 .528437 .312021 .045157 .01409
103 143 764.84 21.94 21.33 972197 | 252.9277 .53887 .331287 .047017 .015576
111 120 689.97 19.78 19.25 973205 | 247.6759 .527681 .31184 .045196 .014094
331 80 439.87 15.96 16.01 | 1.003133( 73.59044 .156787 .098485 .04804 .004731
332 90 485.28 16.55 16.61 | 1.003625( 70.39595 .149981 .093044 .047445 .004414
333 120 586.86 18.3 18.41 | 1.006011( 54.75435 .116656 .072427 .047482 .003439
334 145 656.26 20.29 20.37 | 1.003943( 68.33075 .145581 .093789 .04927 .004621
335 155 691.24 21.24 21.34 | 1.004708( 63.33183 .13493 .088299 .050047 .004419
336 162 709.28 21.95 22.06 | 1.005011( 61.34261 .130692 .087046 .050938 .004434
337 162 711.44 22.02 22.1 | 1.003633( 70.34602 .149874 .099819 .050936 .005084
338 155 698.44 21.44 21.51 | 1.003265( 72.73489 .154964 .101581 .050132 .005093
339 145 667.55 20.49 20.56 | 1.003416 71.7534 .152873 .098409 .049231 .004845
340 120 596.94 18.55 18.63 | 1.004313( 65.91849 .140441 .087395 .047591 .004159
341 90 509.82 16.72 16.78 | 1.003589( 70.63543 .150491 .091929 .046717 .004295
342 80 467.61 16.14 16.21 | 1.004337( 65.75922 .140102 .086439 .047185 .004079




TABLE II.—-T-700 COMPRESSOR DISCHARGE SEAL
AND ENGINE TEST PARAMETERS

(a) On way up

Configuration | Compresso| Turbin Compresso CDLPCE Impeller CDLPCE Pressure

r e r temperature,| aft cavity pressure, | difference,

speed, speed, discharge °F pressure, psia psia
rpm rpm pressure, psia
psia
Baseline 29 600 10 500 50 348 375 16.2 21.3
Brush 321 39.5 15.4 24.1
Difference 2.8
Baseline 35 500 14 000 70 498 46.7 17.0 29.7
BrusH 79 458 53.1 16.3 36.8
Difference 7.1
Baseline 38 300 17 400 90 578 57.5 18.4 39.1
Brush 502 59.2 16.8 424
Difference 3.3
Baseline 41 300 20 000 120 688 74.2 21.2 53.0
Brush 40 400 20 000 599 76.0 18.7 57.3
Difference 4.3
Baseline 43 190 19 000 145 765 87.6 23.9 63.7
Brush 42 340 20 000 673 89.9 20.8 69.1
Difference 54
Baseline and 43 090 19 700 155 710 95.6 21.8 73.8
brush

(b) On way down

Baseline and 42 500 20 000 145 683 89.9 20.9 69.0
brush
Baseline 41 400 20 000 120 690 74.1 21.2 52.9
Brush 605 76.4 18.9 57.5
Difference 4.6
Baseline 38 400 17 400 90 581 57.7 18.5 39.2
Brush 37 800 18 100 516 59.1 16.9 42.2
Difference 3.0
Baseline 35 600 14 000 70 46.8 16.9 29.9
Brush 34 800 14 600 473 48.2 16.0 32.2
Difference 2.3
Baseline 29 700 10 500 50 378 37.6 16.1 215
Brush 31 700 10 500 59 379 42.9 15.8 27.1
Difference 5.6

°*CDLPCE denotes compressor discharge low-pressure-cavity exhaust.
°rpm overshot and then backed down to "run through” the compressor critical speed. (Note: this is not the case on the
way down.)



TABLE Ill. —RELATIVE PRESSURE DROPS FOR
BASELINE COMPRESSOR DISCHARGE
LABYRINTH AND BRUSH
SEAL SYSTEMS

(a) On way up

Compressor Pressure difference,
discharge pressufle, AP, .. AP, .

psia psi
50 2.8
70,79 7.1
90 3.3
120 4.3
145 5.4

(b) On way down

120 4.6
90 3.0
70 2.3
50, °59 5.6
‘Baseline.
*Brush.

TABLE IV.—DECREASE IN SPECIFIC FUEL
CONSUMPTION WITH INCREASE IN
COMPRESSOR DISCHARGE PRES-

SURE FOR DUAL-BRUSH SEAL

Readind CompressprExperimental | Experimenta
discharge testbed testbed
pressure,| engine specificf  engine

psia [fuel consumptiop horsepower

42 70 1.39 139
49 90 .95 140.4
56 145 .59 185.4
63 90 .96 193.4
71 70 1.36 265.4
96 120 .67 265.4
103 143 .59 270.4
111 120 .68 278.1
331 80 1.12 552.4
332 90 .92 545.4
333 12Q .67 534
334 145 .57 552.9
33§ 155 .55 828.9
334 162 .54 839.4
337 162 .53 822.4
339 155 .54 828.4
339 145 .57 953.4
34( 120 .66 990.1
341 90 9 1038.3
347 80 1.11 1060.4
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(b) Location of CDP flowmeter.

Figure 1.—Schematic of engine airflow and location of flowmeter.
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(a) Labyrinth seal package and airflow.
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(b) Schematic of labyrinth compressor discharge seal. (Seal teeth and axis established by diameters A and B to be concentric within
0.003 full indicator reading. No steps allowed on tooth face or at fillet radius. All dimensions are in inches.)

Figure 2.—Labyrinth compressor discharge seal system.
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Figure 3.—Simulated exploded view of labyrinth compressor
dishcharge seal system.
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(a) Brush seal package and airflow.
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(b) lllustration of dual-brush compressor discharge seal system.

Figure 4.—Dual-brush compressor discharge seal system and schematic of airflow.
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Figure 5.—Exploded view of dual-brush compressor
discharge seal system (after test).

Figure 6.—Compressor discharge seal rotors for labyrinth
seal (right) and brush seal (left).
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C-a3-0270 C-93-02M2

(a) Upstream view. (b) Downstream view.

C-Ba-02T11

(c) Isometric view.

Figure 7.—Dual-brush compressor discharge seal system after testing.
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(a) Dual-brush seal.

(b) Seal package cavity and housing.

Figure 8.—Dual-brush seal package installation.
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(c) Discharge seal profile showing deeper wear scars.

harge seal rub runner.
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Figure 12.—SEM peaks associated with drain pipe debris.
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Figure 13.—SEM peaks associated with chromium-carbide-coated rub runner.
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Figure 13.—Continued.
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Figure 14.—Seal weight flow as a function of compressor discharge
pressure for labyrinth and dual-brush seals.
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Figure 15.—Experimental testbed engine specific fuel consumption as a
function of compressor discharge pressure with labyrinth and dual-brush
seals.
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